ANNUAL WATER OUALITY REPORTING YEAR 2020

Presented By West Travis County Public Utility Agency

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (512) 263-0125.

PWS ID#: 2270235

Quality First

Once again, we are pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2020. As in years past, we are committed to delivering the bestquality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education while continuing to serve the needs of all our water users. Thank you for allowing us the opportunity to serve you and your family.

Count on Us

Delivering high-quality drinking water to our customers involves far more than just pushing water through pipes. Water treatment is a complex, time-consuming process. Because

tap water is highly regulated by state and federal laws, water treatment plant and system operators must be licensed and are required to commit to long-term, on-the-job training before becoming fully qualified. Our licensed water professionals have a basic understanding of a wide range of subjects, including mathematics, biology, chemistry, and physics. Some of the tasks they complete on a regular basis include:

- Operating and maintaining equipment to purify and clarify water;
- Monitoring and inspecting machinery, meters, gauges, and operating conditions;
- Conducting tests and inspections on water and evaluating the results;
- Maintaining optimal water chemistry;
- Applying data to formulas that determine treatment requirements, flow levels, and concentration levels;
- Documenting and reporting test results and system operations to regulatory agencies; and
- Serving our community through customer support, education, and outreach.

So, the next time you turn on your faucet, think of the skilled professionals who stand behind each drop.

Source Water Assessment

The Texas Commission on Environmental Quality (TCEQ), the state regulatory agency, completed an assessment of your source water. Results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confidence Report.

Further details about sources and source water assessments are available at Drinking Water Watch, https://dww2.tceq.texas. gov/DWW/. If you would like a copy of our assessment, please feel free to contact our office during regular business hours at (512) 263-0125 or view it on our website, wtcpua.org.

cause Lead in drinking

We remain vigilant in delivering the best-quality drinking water

"

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and compo-

> nents associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or

cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Water Loss Audit

In the water loss audit submitted to the Texas Water Development Board during the year covered by this report, our system lost an estimated 121 million gallons of water. If you have any questions about the water loss audit, please call (512) 263-0125.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer, those who have undergone organ transplants, those who are undergoing treatment with steroids, and people with

HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guide-lines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

QUESTIONS? For more information about this report, or for any questions relating to your drinking water, please call Customer Service at (512) 263-0125.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Where Does My Water Come From?

Our drinking water source is Lake Austin, a reservoir on the Colorado River. It is maintained as a constant-level lake by releases of water from Lake Travis upstream.

Level 1 Assessment Update

Coliforms are bacteria that are naturally present in the environment and used as an indicator that other, potentially harmful, waterborne pathogens may be

present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessments to identify and correct any problems found during these assessments.

During the past year, we were required to conduct one Level 1 assessment, which was completed.

Table Talk

Get the most out of the Testing Results data table with this simple suggestion. In less than a minute, you will know all there is to know about your water:

For each substance listed, compare the value in the Amount Detected column against the value in the MCL (or AL or SCL) column. If the Amount Detected value is smaller, your water meets the health and safety standards set for the substance.

Other Table Information Worth Noting

Verify that there were no violations of the state or federal standards in the Violation column. If there was a violation, you will see a detailed description of the event in this report.

If there is an ND or a less-than symbol (<), that means that the substance was not detected (i.e., below the detectable limits of the testing equipment).

The Range column displays the lowest and highest sample readings. If there is an NA showing, that means that only a single sample was taken to test for the substance (assuming there is a reported value in the Amount Detected column).

If there is sufficient evidence to indicate from where the substance originates, it will be listed under Typical Source.

Community Participation

Public input concerning the water system is welcome at regularly scheduled board meetings, which are generally held on the third Thursday of each month at 1:00 p.m. at City Hall, 4000 Galleria Parkway, Bee Cave.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

The percentage of total organic carbon (TOC) removal was measured each month, and the system met all TOC removal requirements set.

REGULATED SUBSTANCES

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Barium (ppm)	2020	2	2	0.065	0.065–0.065	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beta/Photon Emitters (pCi/L)	2017	50 ¹	0	4.6	4.6-4.6	No	Decay of natural and human-made deposits
Chlorine Residual (ppm)	2020	[4]	[4]	3.08	0.7–4.8	No	Water additive used to control microbes
Cyanide (ppb)	2020	200	200	70	70–70	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories
Fluoride (ppm)	2020	4	4	0.2	0.2–0.2	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAAs] (ppb)	2020	60	NA	21	9.1–16.7	No	By-product of drinking water disinfection
Nitrate (ppm)	2020	10	10	0.2	0.2–0.2	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
TTHMs [Total Trihalomethanes] (ppb)	2020	80	NA	51	32-47.2	No	By-product of drinking water disinfection
Total Coliform Bacteria (positive samples)	2020	ΤT	NA	2	NA	No	Naturally present in the environment
Turbidity							
	LEVEL	LEVEL DETECTED		LIMIT (TREATMENT TECHNIQUE)		N LIKELY SOURCE OF CONTAMINATION	
Highest Single Measureme	0.3	0.35 NTU		1 NTU	No	Soil runoff	
Lowest Monthly % Meeting Limit		1	100%		0.3 NTU	No	Soil runoff

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known

or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (**parts per billion**): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

Tap water samples were collected for lead and copper analyses from sample sites throughout the community											
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/TOTAL SITES	VIOLATION	TYPICAL SOURCE				
Copper (ppm)	2020	1.3	1.3	0.588	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits				
Lead (ppb)	2020	15	0	1.24	0/30	No	Lead service lines, corrosion of household plumbing systems, including fittings and fixtures; Erosion of natural deposits				

¹The MCL for beta particles is 4 mrem/year. U.S. EPA considers 50 pCi/L to be the level of concern for beta particles.

What type of container is best for storing water?

Consumer Reports has consistently advised that glass or BPA-free plastics such as polyethylene are the safest choices. To be on the safe side, don't use any container with markings on the recycle symbol showing "7 PC" (that's code for BPA). You could also consider using stainless steel or aluminum with BPA-free liners.

How much emergency water should I keep?

Typically, one gallon per person per day is recommended. For a family of four, that would be 12 gallons for three days. Humans can survive without food for one month but can only survive one week without water.

How long can I store drinking water?

The disinfectant in drinking water will eventually dissipate, even in a closed container. If that container housed bacteria prior to filling up with the tap water, the bacteria may continue to grow once the disinfectant has dissipated. Some experts believe that water can be stored up to six months before needing to be replaced. Refrigeration will help slow the bacterial growth.

How long does it take a water supplier to produce one glass of drinking water? It can take up to 45 minutes to produce a single glass of drinking water.

How many community water systems are there in the U.S.?

About 53,000 public water systems across the United States process 34 billion gallons of water per day for home and commercial use. Eighty-five percent of the population is served by these systems.

Which household activity wastes the most water?

Most people would say the majority of water use comes from showering or washing dishes; however, toilet flushing is by far the largest single use of water in a home (accounting for 40 percent of total water use). Toilets use about 4 to 6 gallons per flush, so consider an ultra-low-flow (ULF) toilet, which requires only 1.5 gallons.

